A parallel plate capacitor of capacitance $5\,\mu F$ and plate separation $6\, cm$ is connected to a $1\, V$ battery and charged. A dielectric of dielectric constant $4$ and thickness $4\, cm$ is introduced between the plates of the capacitor. The additional charge that flows into the capacitor from the battery is........$\mu C$
$2$
$3$
$5$
$10$
A parallel plate capacitor with plate area $A$ and plate separation $d$ is filled with a dielectric material of dielectric constant $K =4$. The thickness of the dielectric material is $x$, where $x < d$.
Let $C_1$ and $C_2$ be the capacitance of the system for $x =\frac{1}{3} d$ and $x =\frac{2 d }{3}$, respectively. If $C _1=2 \mu F$ the value of $C _2$ is $........... \mu F$
Two parallel metal plates having charges $+Q$ and $- Q$ face each other at a certain distance between them. If the plates are now dipped in kerosene oil tank, the electric field between the plates will
The two metallic plates of radius $r$ are placed at a distance $d$ apart and its capacity is $C$. If a plate of radius $r/2$ and thickness $d$ of dielectric constant $6$ is placed between the plates of the condenser, then its capacity will be
A parallel plate capacitor $\mathrm{C}$ with plates of unit area and separation $\mathrm{d}$ is filled with a liquid of dielectric constant $\mathrm{K}=2$. The level of liquid is $\frac{\mathrm{d}}{3}$ initially. Suppose the liquid level decreases at a constant speed $V,$ the time constant as a function of time $t$ is Figure: $Image$
A parallel plate air-core capacitor is connected across a source of constant potential difference. When a dielectric plate is introduced between the two plates then :